Title of article :
Evaluation of immunoglobulins produced in vitro by head-kidney leucocytes of sea bass Dicentrarchus labrax by immunoenzymatic assay
Author/Authors :
Meloni، نويسنده , , S and Scapigliati، نويسنده , , G، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Three distinct sub-populations of macrophages derived from goldfish kidney leukocyte cultures were generated and characterised. The sub-populations designated as R1, R2 and R3-type macrophages had distinct morphological, cytochemical and flow cytometric profiles, and also differed in their anti-microbial functions after activation with macrophage activation factors (MAF) and bacterial lipopolysaccharide (LPS). The R1-type macrophages were small cells that contained acid phosphatase, but lacked myeloperoxidase and non-specific esterase. The R2-type macrophages were morphologically similar to mature tissue macrophages of mammals, and were positive for acid phosphatase, myeloperoxidase and non-specific esterase. The R3-type macrophages were round cells with eccentrically placed nuclei and resembled mammalian monocytes. This sub-population stained for acid phosphatase, myeloperoxidase and non-specific esterase. The R2 and R3-type macrophages exhibited distinct functional responses after activation with MAF and/or LPS. R2-type macrophages were potent producers of nitric oxide, while R3-type macrophages produced little or no nitric oxide after activation with MAF and LPS. The R2 and R3-type macrophages also exhibited unique respiratory burst responses (ROI) after treatment with MAF and/or LPS. After treatment with MAF and LPS, activated R2 macrophages were primed for ROI after only 6 h of stimulation with the activating agents, and continued to exhibit a strong ROI response for an extended cultivation period (48 h). In contrast, activated R3-type macrophages showed an early ROI response (6 h after treatment with MAF and LPS), which decreased significantly by 48 h after treatment with the activating agents. Our results suggest that the analysis of the mechanisms of induction of fish anti-microbial responses may be dependent upon the concerted actions of functionally distinct macrophage sub-populations.
Keywords :
sea bass , Vibrio anguillarum , DNP-KLH , ELISA , ELISPOT , immunology
Journal title :
Fish and Shellfish Immunology
Journal title :
Fish and Shellfish Immunology