Title of article :
Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments
Author/Authors :
Van Opstal، نويسنده , , Isabelle and Bagamboula، نويسنده , , Cathérine F. and Vanmuysen، نويسنده , , Suzy C.M. and Wuytack، نويسنده , , Elke Y. and Michiels، نويسنده , , Chris W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
227
To page :
234
Abstract :
The objective of this work was to study the germination and subsequent inactivation of Bacillus cereus spores in milk by mild hydrostatic pressure treatment. In an introductory experiment with strain LMG6910 treated at 40 °C for 30 min at 0, 100, 300 and 600 MPa, germination levels were 1.5 to 3 logs higher in milk than in 100 mM potassium phosphate buffer (pH 6.7). The effects of pressure and germination-inducing components present in the milk on spore germination were synergistic. More detailed experiments were conducted in milk at a range of pressures between 100 and 600 MPa at temperatures between 30 and 60 °C to identify treatments that allow a 6 log inactivation of B. cereus spores. The mildest treatment resulting in a 6 log germination was 30 min at 200 MPa/40 °C. Lower treatment pressures or temperatures resulted in considerably less germination, and higher pressures and temperatures further increased germination, but a small fraction of spores always remained ungerminated. Further, not all germinated spores were inactivated by the pressure treatment, even under the most severe conditions (600 MPa/60 °C). Two possible approaches to achieve a 6 log spore inactivation were identified, and validated in three additional B. cereus strains. The first is a single step treatment at 500 MPa/60 °C for 30 min, the second is a two-step treatment consisting of pressure treatment for 30 min at 200 MPa/45 °C to induce spore germination, followed by mild heat treatment at 60 °C for 10 min to kill the germinated spores. Reduction of the pressurization time to 15 min still allows a 5 log inactivation. These results illustrate the potential of high-pressure treatment to inactivate bacterial spores in minimally processed foods.
Keywords :
Bacillus cereus spores , Minimally processed foods , high hydrostatic pressure , milk
Journal title :
International Journal of Food Microbiology
Serial Year :
2004
Journal title :
International Journal of Food Microbiology
Record number :
2110813
Link To Document :
بازگشت