Title of article :
Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance.
Author/Authors :
Jin، نويسنده , , Xiao Fen and Yang، نويسنده , , Xiao E. and Islam، نويسنده , , Ejazul and Liu، نويسنده , , Dan and Mahmood، نويسنده , , Qaisar and Li، نويسنده , , Hong and Li، نويسنده , , Junying، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
997
To page :
1006
Abstract :
Zn phytotoxicity and its possible detoxifying responses in two ecotypes of Sedum alfredii Hance, i.e. hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were investigated. HE grew better with high Zn concentrations of 29.11 g kg−1 DW in shoots when exposed to 500 μM Zn2+. Toxicity symptoms caused by Zn in root cells of both ecotypes mainly included plasmolysis, disruption of plasma membranes and increased cell vacuolation. At high supplied Zn concentration, chloroplasts suffered from structural disorganization in both ecotypes. Zn-induced hydrogen peroxide (H2O2) and superoxide radical ( O 2 − ) productions in leaves were determined by a histochemical method, which revealed that Zn stress may have involved NADPH oxidase, protein phosphatases and intracellular Ca2+ to activate the reactive oxygen species production. Inhibition of glutathione synthesis may have led to increased H2O2 and O 2 − accumulations in leaves of HE. In response to higher Zn concentrations, ascorbic acid significantly increased in both ecotypes and levels of glutathione increased in both leaves and roots of HE and in roots of NHE without any change in the leaves of NHE. The enzymatic activities like those of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2) in leaves of HE were all enhanced at supplied Zn concentration of 500 μM, which may account for its better growth.
Keywords :
antioxidant , glutathione , Ultrastructure , zinc (Zn) , Phytoremediation , Sedum alfredii Hance.
Journal title :
Plant Physiology and Biochemistry
Serial Year :
2008
Journal title :
Plant Physiology and Biochemistry
Record number :
2121985
Link To Document :
بازگشت