Title of article :
Mercury-induced biochemical and proteomic changes in rice roots
Author/Authors :
Chen، نويسنده , , Yun-An and Chi، نويسنده , , Wen-Chang and Huang، نويسنده , , Tsai-Lien and Lin، نويسنده , , Chung-Yi and Quynh Nguyeh، نويسنده , , Thi Thuy and Hsiung، نويسنده , , Yu-Chywan and Chia، نويسنده , , Li-Chiao and Huang، نويسنده , , Hao-Jen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
23
To page :
32
Abstract :
Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants.
Keywords :
Antioxidative enzymes , Lipid peroxidation , mercury , oxidative stress , Proteome
Journal title :
Plant Physiology and Biochemistry
Serial Year :
2012
Journal title :
Plant Physiology and Biochemistry
Record number :
2123157
Link To Document :
بازگشت