Title of article :
An intuitionistic fuzzy grey model for selection problems with an application to the inspection planning in manufacturing firms
Author/Authors :
Mousavi، نويسنده , , S.M. and Mirdamadi، نويسنده , , S. and Siadat، نويسنده , , A. and Dantan، نويسنده , , J. and Tavakkoli-Moghaddam، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
11
From page :
157
To page :
167
Abstract :
Most of complex selection problems in real-life applications are considered under multiple conflicting attributes for manufacturing firms. The appropriate selection plays an important role in the firm׳s performance from the tactical and operational viewpoints. The classical methods for the selection problems in manufacturing firms are inadequate to deal with uncertainties, including insufficiency in information availability and the imprecise or vague nature in experts׳ judgments and preferences. To overcome these difficulties, this paper introduces a novel distance-based decision model for the multi-attributes analysis by considering the concepts of intuitionistic fuzzy sets (IFSs), grey relations and compromise ratio approaches. A weighting method for the attributes is first developed based on a generalized version of the entropy and IFSs along with experts׳ judgments. Then, a new grey relational analysis is introduced to analyze the extent of connections between two potential scenarios by an intuitionistic fuzzy distance measurement. Finally, a new intuitionistic fuzzy compromise ratio index to prioritize the scenarios is proposed by considering the weight of the strategy for the maximum group utility in intuitionistic fuzzy grey environment. The feasibility and practicability of the proposed distance-based decision model is illustrated in detail, and it is implemented in a real case study to the inspection planning for the oil pump housing from Renault automobile manufacturing.
Keywords :
Intuitionistic fuzzy sets (IFSs) , Multi-attributes analysis , Inspection planning , Grey relational analysis , Manufacturing firms
Journal title :
Engineering Applications of Artificial Intelligence
Serial Year :
2015
Journal title :
Engineering Applications of Artificial Intelligence
Record number :
2126411
Link To Document :
بازگشت