Title of article :
Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using Laser-Induced Fluorescence
Author/Authors :
Prins، نويسنده , , M.J. and Li، نويسنده , , Z.S. and Bastiaans، نويسنده , , R.J.M. and van Oijen، نويسنده , , J.A. and Aldén، نويسنده , , M. and de Goey، نويسنده , , L.P.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
280
To page :
286
Abstract :
The development of improved biomass pyrolysis models is vital for more accurate modelling and design of biomass conversion equipment. Such improved models must be based on reliable experimental data: biomass should be pyrolyzed at high heating rates and the reaction products should be measured using an on-line, non-intrusive method. Therefore, a heated grid reactor with heating rate of 300–600 K/s was used to study pyrolysis of biomass at temperatures in the range of 500–700 °C. The formation of formaldehyde and carbon monoxide from wood at high heating rates was successfully visualized using Laser-Induced Fluorescence (LIF). A thin vertical laser line or sheet was present directly above the biomass lying on the heated grid. Two-photon excitation at 230 nm was applied to induce fluorescence of carbon monoxide present in the volatiles, whereas excitation of formaldehyde was done at 355 nm. Visualization of these compounds shows that the release rises strongly with temperature; this typically happens on a timescale in the order of seconds. In principle, the method described allows for the determination of truly primary products. Future research is recommended, aimed at quantifying the concentrations measured by LIF. Care must be taken to calibrate for quenching of the fluorescence signal. Avoiding secondary reactions taking place in the gas phase is another experimental challenge.
Keywords :
Biomass pyrolysis , CFD , In situ laser spectroscopy , Devolatilization
Journal title :
Journal of Analytical and Applied Pyrolysis
Serial Year :
2011
Journal title :
Journal of Analytical and Applied Pyrolysis
Record number :
2128028
Link To Document :
بازگشت