Title of article :
Statistical inference on regression with spatial dependence
Author/Authors :
Robinson، نويسنده , , Peter M. and Thawornkaiwong، نويسنده , , Supachoke، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Abstract :
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss estimation of the variance matrix, including estimates that are robust to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample performance is included. In an empirical example, the estimates and robust and non-robust standard errors are computed from Indian regional data, following tests for spatial correlation in disturbances, and nonparametric regression fitting. Some final comments discuss modifications and extensions.
Keywords :
Linear regression , Partly linear regression , Nonparametric regression , Instrumental variables , Spatial data , Asymptotic normality , Variance estimation
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics