Title of article :
Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids
Author/Authors :
Calderon Moreno، نويسنده , , Jose Maria and Vasilescu، نويسنده , , Ecaterina and Drob، نويسنده , , Paula and Osiceanu، نويسنده , , Petre and Vasilescu، نويسنده , , Cora and Drob، نويسنده , , Silviu Iulian and Popa، نويسنده , , Monica، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
1195
To page :
1204
Abstract :
An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.
Keywords :
Long-term passive film , EIS , microstructure , XPS , SEM , Raman micro-spectroscopy
Journal title :
MATERIALS SCIENCE & ENGINEERING: B
Serial Year :
2013
Journal title :
MATERIALS SCIENCE & ENGINEERING: B
Record number :
2150913
Link To Document :
بازگشت