Title of article :
Nanometer-resolution electron microscopy through micrometers-thick water layers
Author/Authors :
de Jonge، نويسنده , , Niels and Poirier-Demers، نويسنده , , Nicolas and Demers، نويسنده , , Hendrix and Peckys، نويسنده , , Diana B. and Drouin، نويسنده , , Dominique، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Abstract :
Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 μm. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.
Keywords :
Scanning transmission electron microscopy , water , Spatial resolution , Elastic scattering , Monte Carlo simulation , Electron probe broadening , Eukaryotic cell , Solid:liquid interface , Gold nanoparticle
Journal title :
Ultramicroscopy
Journal title :
Ultramicroscopy