Title of article :
Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates
Author/Authors :
Welch، نويسنده , , Siao-Kun Wan and Jolie، نويسنده , , Rika and Pearce، نويسنده , , Douglas S. and Koertje، نويسنده , , William D. and Fuog، نويسنده , , Eric B. Shields، نويسنده , , Shelly L. and Yoo، نويسنده , , Dongwan and Calvert، نويسنده , , Jay G.، نويسنده ,
Issue Information :
سالنامه با شماره پیاپی سال 2004
Pages :
14
From page :
277
To page :
290
Abstract :
Porcine reproductive and respiratory syndrome virus (PRRSV) is an emerging pathogen causing significant economic losses in the swine industry worldwide. Two novel gene-deleted viruses were constructed and evaluated as vaccine candidates. Using the full-length infectious cDNA clone of North American PRRS isolate P129, the ORF2 and ORF4 genes (which encoded minor structural glycoproteins GP2a/2b and GP4, respectively) were individually deleted from the viral genome. Both deletion mutants were non-viable in MARC-145 cells and porcine alveolar macrophages, indicating that both genes are essential for virus replication. To rescue the replication-defective PRRSV, two complementing cell lines, MARC-2000 and MARC-400, were established to stably express the PRRSV GP2 and GP4 proteins, respectively. These cells were able to complement the deleted gene function of PRRSV in trans and supported production of the replication-defective ΔORF2-PRRSV and ΔORF4-PRRSV viruses. Both ΔORF2-PRRSV and ΔORF4-PRRSV viruses were propagated for 40–50 generations in the corresponding complementing cells and remained replication-defective in MARC-145 cells. To examine the immunogenic potential of the replication-defective PRRSV as vaccine candidates, four groups of pigs, 20 pigs per group, were immunized twice with ΔORF2-PRRSV or ΔORF4-PRRSV and challenged with the homologous virulent virus at 3 weeks post-immunization. In spite of the fact one group showed significant reduction in virus load, we could not demonstrate improvement from clinical diseases in this vaccination/challenge study. However, we did show that the cDNA clone of PRRSV can be a useful tool to genetically engineer PRRSV vaccine candidates and to study pathogenesis and viral gene functions.
Keywords :
PRRSV , Arterivirus , Infectious cDNA clone , Vaccine trial , Replication-defective virus , Complementing cells
Journal title :
Veterinary Immunology and Immunopathology
Serial Year :
2004
Journal title :
Veterinary Immunology and Immunopathology
Record number :
2162488
Link To Document :
بازگشت