Title of article :
Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties
Author/Authors :
Li، نويسنده , , X.P. and Kang، نويسنده , , C.W. and Huang، نويسنده , , H. and Zhang، نويسنده , , L.C. and Sercombe، نويسنده , , T.B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
370
To page :
379
Abstract :
In this study, single line scans at different laser powers were carried out using selective laser meting (SLM) equipment on a pre-fabricated porous Al86Ni6Y4.5Co2La1.5 metallic glass (MG) preform. The densification, microstructural evolution, phase transformation and mechanical properties of the scan tracks were systematically investigated. It was found that the morphology of the scan track was influenced by the energy distribution of the laser beam and the heat transfer competition between convection and conduction in the melt pool. Due to the Gaussian distribution of laser energy and heat transfer process, different regions of the scan track experienced different thermal histories, resulting in a gradient microstructure and mechanical properties. Higher laser powers caused higher thermal stresses, which led to the formation of cracks; while low power reduced the strength of the laser track, also inducing cracking. The thermal fluctuation at high laser power produced an inhomogeneous chemical distribution which gave rise to severe crystallization of the MG, despite the high cooling rate. The crystallization occurred both within the heat affected zone (HAZ) and at the edge of melt pool. However, by choosing an appropriate laser power crack-free scan tracks could be produced with no crystallization. This work provides the necessary fundamental understanding that will lead to the fabrication of large-size, crack-free MG with high density, controllable microstructure and mechanical properties using SLM.
Keywords :
metallic glass , Selective laser melting , Solidification microstructure , Phase transformation , mechanical properties
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Serial Year :
2014
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Record number :
2175860
Link To Document :
بازگشت