Title of article :
Attenuation of a non-parallel beam of gamma radiation by thick shielding—application to the determination of the 235U enrichment with NaI detectors
Author/Authors :
Mortreau، نويسنده , , Patricia and Berndt، نويسنده , , Reinhard، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
16
From page :
675
To page :
690
Abstract :
The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the “enrichment meter principle” [1]. It involves measuring the intensity of the 186 keV net peak area of 235U in “quasi-infinite” samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called “wall thickness” correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. aper is dedicated to the calculation by numerical integration of the geometrical correction factor (Kwtc) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector.
Keywords :
Uranium enrichment , Non-destructive assay , ?-ray spectrometry , Numerical Integration , Wall thickness correction factor , NaI Detector
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Serial Year :
2005
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Record number :
2199237
Link To Document :
بازگشت