Author/Authors :
Hwang، نويسنده , , C.-S. and Chang، نويسنده , , C.-H. and Chen، نويسنده , , H.-H. and Lin، نويسنده , , F.-Y. and Fan، نويسنده , , T.-C. and Huang، نويسنده , , M.-H. and Jan، نويسنده , , J.-C. and Hsu، نويسنده , , K.-T. and Chen، نويسنده , , J. and Hsu، نويسنده , , S.-N. and Hsiung، نويسنده , , G.-Y. and Chang، نويسنده , , H.-P. and Kuo، نويسنده , , C.-C. and Chien، نويسنده , , Y.-C. and Hsiao، نويسنده , , F.-Z. and Chen، نويسنده , , J.-R. and Chen، نويسنده , , C.-T.، نويسنده ,
Abstract :
A 3.2 T superconducting wiggler with a periodic length of 6 cm and 32 poles was designed and fabricated as an X-ray source. The beam duct of this magnet is a semi-cold, ultra-high vacuum chamber that consists of an aluminum and stainless steel taper. The number of poles in this magnet design is even, to minimize the integral strengths of the multipole components. Two measurement systems—involving room-temperature and cryogenic Hall probes—were set up to measure the field of the superconducting wiggler. A cryogenic plant that supplied liquid helium and nitrogen to the superconducting wiggler has already been established. The performance of magnet construction is good and the commissioning of the superconducting wiggler in the storage ring has been successful. No trim coil compensation on the magnet is required to adjust the electron beam orbit. Furthermore, the electron beams exhibit no loss and remain highly stable after the superconducting wiggler has been quenched.
Keywords :
Superconducting wiggler , Magnet field measurement , Heat load analysis , Magnet cryostat , Cryogenic plant