Title of article :
Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors
Author/Authors :
Lintereur، نويسنده , , Azaree T. and Qiu، نويسنده , , Wei and Nino، نويسنده , , Juan C. and Baciak، نويسنده , , James، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
4
From page :
166
To page :
169
Abstract :
Bismuth tri-iodide is a wide band-gap semiconductor material that may be able to operate as a radiation detector without any cooling mechanism. This material has a higher effective atomic number than germanium and CdZnTe, and thus should have a higher gamma-ray detection efficiency, particularly for moderate and high energy gamma-rays. Unfortunately, not much is known about bismuth tri-iodide, and the general properties of the material need to be investigated. Bismuth tri-iodide does not suffer from some of the material issues, such as a solid state phase transition and dissociation in air, that mercuric iodide (another high-Z, wide band-gap semiconductor) does. Thus, bismuth tri-iodide is both easier to grow and handle than mercuric iodide. A modified vertical Bridgman growth technique is being used to grow large, single bismuth tri-iodide crystals. Zone refining is being performed to purify the starting material and increase the resistivity of the crystals. The single crystals being grown are typically several hundred mm3. The larger crystals grown are approximately 2 cm3. Initial detectors are being fabricated using both gold and palladium electrodes and palladium wire. The electron mobility measured using an alpha source was determined to be 260±50 cm2/Vs. An alpha spectrum was recorded with one of the devices; however the detector appears to suffer from polarization.
Keywords :
Radiation detection , Gamma-ray spectroscopy , Bismuth tri-iodide
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Serial Year :
2011
Journal title :
Nuclear Instruments and Methods in Physics Research Section A
Record number :
2204458
Link To Document :
بازگشت