Title of article :
On the study of vortex-induced vibration of a cylinder with helical strakes
Author/Authors :
Zhou، نويسنده , , T. and Razali، نويسنده , , S.F. Mohd. and Hao، نويسنده , , Z. and Cheng، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
While the effect of helical strakes on suppression of Vortex-Induced Vibrations (VIV) has been studied extensively, the mechanism of VIV mitigation using helical strakes is much less well documented in the literature. In the present study, a rigid circular cylinder of diameter d=80 mm attached with three-strand helical strakes of dimensions of 10d in pitch and 0.12d in height was tested in a wind tunnel. It was found that the helical strakes can reduce VIV by about 98%. Unlike the bare cylinder, which experiences lock-in over the reduced velocity in the range of 5–8.5, the straked cylinder does not show any lock-in region. In exploring the mechanism of VIV reduction by helical strakes, measurements in stationary bare and straked cylinder wakes using both a single X-probe at four different Reynolds numbers, i.e. Re=10 240, 20 430, 30 610 and 40 800, and two X-probes with variable separations in the spanwise direction at Re=20 430 were conducted. It was found that vortices shed from the straked cylinder are weakened significantly. The dominate frequency varies by about 30% over the range of x/d=10–40 in the streamwise direction while that differs by about 37.2% of the averaged peak frequency over a length of 3.125d in the spanwise direction. The latter is supported by the phase difference between the velocity signals measured at two locations separated in the spanwise direction. The correlation length of the vortex structures in the bare cylinder wake is much larger than that obtained in the straked cylinder wake. As a result, the straked cylinder wake agrees more closely with isotropy than the bare cylinder wake. Flow visualization on the plane perpendicular to the cylinder axis at Reynolds number of about 300 reveals small-scale vortices in the shear layers of the straked cylinder wake. However, these vortices do not roll up and interact with each other to form the well-organized Karman-type vortices. Flow visualization on the plane parallel to the cylinder axis shows vortex dislocation and swirling flow, which should be responsible for the variations of the peak frequency in the streamwise as well as spanwise directions.
Keywords :
Vortex-induced vibration , Helical strakes , Correlation length , Vortex shedding
Journal title :
Journal of Fluids and Structures
Journal title :
Journal of Fluids and Structures