Title of article :
Flow characteristics and flow-induced forces of a stationary and rotating triangular cylinder with different incidence angles at low Reynolds numbers
Author/Authors :
Tu، نويسنده , , Jiahuang and Zhou، نويسنده , , Dai and Bao، نويسنده , , Yan and Han، نويسنده , , Zhaolong and Li، نويسنده , , Rudi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
17
From page :
107
To page :
123
Abstract :
In this paper, the problem of two-dimensional fluid flow past a stationary and rotationally oscillating equilateral triangular cylinder with a variable incident angle, Reynolds number, oscillating amplitude, and oscillating frequency is numerically investigated. The computations are carried out by using a two-step Taylor-characteristic-based Galerkin (TCBG) algorithm. For the stationary cases, simulations are conducted at various incident angles of α=0.0–60.0° and Reynolds numbers of Re=50–160. For the oscillation cases, the investigations are done at various oscillating amplitudes of θmax=7.5–30.0° and oscillating frequencies of Fs/Fo=0.5–3.0 considering two different incidence angles (α=0.0°, 60.0°) and three different Reynolds numbers (Re=50, 100, 150). The results show that the influences of key parameters (incidence angle, Reynolds number, oscillating amplitude, and oscillating frequency) are significant on the flow pattern and hydrodynamic forces. For the stationary cases, at smaller angle of incidence (α≤30.0°), Reynolds number has a large impact on the position of the separation points. When α is between 30.0° and 60.0°, it was found that the separation points are located at the rear corners. From a topological point of view, the diagram of flow pattern is summarized, including two distinct patterns, namely, main separation and vortex merging. A deep analysis of the influence of Reynolds number and incidence angles on the mean pressure coefficient along the triangular cylinder surface is presented. Additionally, for the oscillating cases, the lock-on phenomenon is captured. The dominant flow patterns are 2S mode and P+S mode in lock-on region at α=0.0°. It is found at α=60.0°, however, that the flow pattern is predominantly 2S mode. Furthermore, except for the case of Fs/Fo=2.0, the mean drag decreases as the oscillating amplitude increases for each Reynolds number at α=0.0°. At α=60.0°, the minimum mean drag for Fs/Fo=1.5 is lower than that for stationary case, and occurs at θmax=15.0° (Re=100) and θmax=22.5° (Re=150), respectively. Finally, the effect of Reynolds number on a rotational oscillation cylinder is elucidated.
Keywords :
Triangular cylinder , Rotational oscillation , Flow pattern , Hydrodynamic force , Laminar flow
Journal title :
Journal of Fluids and Structures
Serial Year :
2014
Journal title :
Journal of Fluids and Structures
Record number :
2214397
Link To Document :
بازگشت