Title of article :
Integration of LSSVM technique with PSO to determine asphaltene deposition
Author/Authors :
Chamkalani، نويسنده , , Ali and Zendehboudi، نويسنده , , Sohrab and Bahadori، نويسنده , , Alireza and Kharrat، نويسنده , , Riaz and Chamkalani، نويسنده , , Reza and James، نويسنده , , Lesley and Chatzis، نويسنده , , Ioannis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
243
To page :
253
Abstract :
Asphaltene deposition is a recognized phenomenon in petroleum industry with undesirable outcomes so that it may lead to wellbore plugging and formation damage, resulting in a large amount of remedial costs to decrease its negative impacts on oil production. Therefore, it has attracted lots of research interests in the literature. In this study, an attempt is made to introduce the least square support vector machine (LSSVM) for prediction of asphaltene deposition. This technique with high capabilities which captures the complex nature of asphaltene could be inferred as a scaling model. As there is no a standard procedure to determine the main parameters of the LSSVM model, the particle swarm optimization (PSO) technique is employed to synchronously optimize the LSSVM parameters. The modeling results clearly demonstrate that the optimized LSSVM is able to handle the nonlinearities well and attain satisfactory results. The comparison of available predictive equations for asphaltene deposition confirms that the LSSVM technique linked with PSO exhibits higher robustness and greater precision with an R2 of 0.989 for the testing phase.
Keywords :
Scaling equation , asphaltene deposition particle , Swarm Optimization , Predictive tool , Least square support vector machine
Journal title :
Journal of Petroleum Science and Engineering
Serial Year :
2014
Journal title :
Journal of Petroleum Science and Engineering
Record number :
2216968
Link To Document :
بازگشت