Title of article :
Robust nonparametric estimation with missing data
Author/Authors :
Boente، نويسنده , , Graciela and Gonz?lez–Manteiga، نويسنده , , Wenceslao and Pérez–Gonz?lez، نويسنده , , Ana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
22
From page :
571
To page :
592
Abstract :
In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local M -functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local M -smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed.
Keywords :
Asymptotic properties , Kernel weights , Missing data , Nonparametric regression , robust estimation
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2009
Journal title :
Journal of Statistical Planning and Inference
Record number :
2219813
Link To Document :
بازگشت