Title of article :
Linear sufficiency and completeness in the context of estimating the parametric function in the general Gauss–Markov model
Author/Authors :
Isotalo، نويسنده , , Jarkko and Puntanen، نويسنده , , Simo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
722
To page :
733
Abstract :
In this paper we consider linear sufficiency and linear completeness in the context of estimating the estimable parametric function K ′ β under the general Gauss–Markov model { y , X β , σ 2 V } . We give new characterizations for linear sufficiency, and define and characterize linear completeness in a case of estimation of K ′ β . Also, we consider a predictive approach for obtaining the best linear unbiased estimator of K ′ β , and subsequently, we give the linear analogues of the Rao–Blackwell and Lehmann–Scheffé Theorems in the context of estimating K ′ β .
Keywords :
Best linear unbiased estimation , Linear sufficiency , Linear completeness , linear estimation
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2009
Journal title :
Journal of Statistical Planning and Inference
Record number :
2219832
Link To Document :
بازگشت