Title of article :
Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data
Author/Authors :
Kayano، نويسنده , , Mitsunori and Konishi، نويسنده , , Sadanori، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
This paper introduces regularized functional principal component analysis for multidimensional functional data sets, utilizing Gaussian basis functions. An essential point in a functional approach via basis expansions is the evaluation of the matrix for the integral of the product of any two bases (cross-product matrix). Advantages of the use of the Gaussian type of basis functions in the functional approach are that its cross-product matrix can be easily calculated, and it creates a much more flexible instrument for transforming each individualʹs observation into a functional form. The proposed method is applied to the analysis of three-dimensional (3D) protein structural data that can be referred to as unbalanced data. It is shown that our method extracts useful information from unbalanced data through the application. Numerical experiments are conducted to investigate the effectiveness of our method via Gaussian basis functions, compared to the method based on B-splines. On performing regularized functional principal component analysis with B-splines, we also derive the exact form of its cross-product matrix. The numerical results show that our methodology is superior to the method based on B-splines for unbalanced data.
Keywords :
functional data analysis , protein structure , spline , radial basis functions , regularization , Model selection , Smoothing Parameter
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference