Title of article :
A surprising property of uniformly best linear affine estimation in linear regression when prior information is fuzzy
Author/Authors :
Arnold، نويسنده , , Bernhard F. and Stahlecker، نويسنده , , Peter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
954
To page :
960
Abstract :
It is already shown in Arnold and Stahlecker (2009) that, in linear regression, a uniformly best estimator exists in the class of all Γ -compatible linear affine estimators. Here, prior information is given by a fuzzy set Γ defined by its ellipsoidal α -cuts . Surprisingly, such a uniformly best linear affine estimator is uniformly best not only in the class of all Γ -compatible linear affine estimators but also in the class of all estimators satisfying a very weak and sensible condition. This property of a uniformly best linear affine estimator is shown in the present paper. Furthermore, two illustrative special cases are mentioned, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.
Keywords :
Zadehיs extension principle , L?wner ordering , Linear regression , Fuzzy sets , Ellipsoidal ? -cuts , Relative squared error , prior information , Uniformly best estimation , Estimation
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2010
Journal title :
Journal of Statistical Planning and Inference
Record number :
2220540
Link To Document :
بازگشت