Title of article :
Improved WLP and GWP lower bounds based on exact integer programming
Author/Authors :
Bulutoglu، نويسنده , , Dursun A. and Kaziska، نويسنده , , David M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
1154
To page :
1161
Abstract :
By using exact integer programming (IP) (integer programming in infinite precision) bounds on the word-length patterns (WLPs) and generalized word-length patterns (GWPs) for fractional factorial designs are improved. In the literature, bounds on WLPs are formulated as linear programming (LP) problems. Although the solutions to such problems must be integral, the optimization is performed without the integrality constraints. Two examples of this approach are bounds on the number of words of length four for resolution IV regular designs, and a lower bound for the GWP of two-level orthogonal arrays. We reformulate these optimization problems as IP problems with additional valid constraints in the literature and improve the bounds in many cases. We compare the improved bound to the enumeration results in the literature to find many cases for which our bounds are achieved. By using the constraints in our integer programs we prove that f ( 16 λ , 2 , 4 ) ⩽ 9 if λ is odd where f ( 2 t λ , 2 , t ) is the maximum n for which an OA ( N , n , 2 , t ) exists. We also present a theorem for constructing GMA OA ( N , N / 2 - u , 2 , 3 ) for u = 1 , … , 5 .
Keywords :
Generalized minimum aberration , Fractional factorial designs , Minimum aberration , Weak minimum aberration , Exact integer programming
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2010
Journal title :
Journal of Statistical Planning and Inference
Record number :
2220570
Link To Document :
بازگشت