Title of article :
Bahadur representation of linear kernel quantile estimator of VaR under assumptions
Author/Authors :
Wei، نويسنده , , Xianglan and Yang، نويسنده , , Shanchao and Yu، نويسنده , , Keming and Yang، نويسنده , , Xin and Xing، نويسنده , , Guodong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
In this paper, it is illustrated that the linear kernel quantile estimator proposed by Parzen (1979) is a reasonable estimator for VaR. Note that Yang (1985) established a Bahadur representation of the estimator in senses of convergence in probability for independent random variables. We extend the result to the case of α -mixing random variable sequence, and it is in senses of almost surely convergence with the rate log − τ n . Moreover, we get the strong consistence of the VaR estimator and its convergence rate, and mean square error of the estimator.
Keywords :
? -mixing , mean square error , Kernel quantile estimator , Strong consistence , VAR , Bahadur representation
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference