Title of article :
Information divergence estimation based on data-dependent partitions
Author/Authors :
Silva، نويسنده , , Jorge and Narayanan، نويسنده , , Shrikanth S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This work studies the problem of information divergence estimation based on data-dependent partitions. A histogram-based data-dependent estimate is proposed adopting a version of Barron-type histogram-based estimate. The main result is the stipulation of sufficient conditions on the partition scheme to make the estimate strongly consistent. Furthermore, when the distributions are equipped with density functions in ( R d , B ( R d ) ) , we obtain sufficient conditions that guarantee a density-free strongly consistent information divergence estimate. In this context, the result is presented for two emblematic partition schemes: the statistically equivalent blocks (Gessamanʹs data-driven partition) and data-dependent tree-structured vector quantization (TSVQ).
Keywords :
Information divergence estimation , data-dependent partitions , Barron density estimate , Vapnik–Chervonenkis inequality , Statistically equivalent blocks , Tree-structured partitions
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference