Title of article :
Nonparametric regression for dependent data in the errors-in-variables problem
Author/Authors :
Honda، نويسنده , , Toshio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
3409
To page :
3424
Abstract :
We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear estimators. We treat both short-range dependent and long-range dependent linear processes in a unified way and demonstrate that the long-range dependence (LRD) of the covariates affects the asymptotic properties of the nonparametric estimators as well as the LRD of regression errors does.
Keywords :
long-range dependence , Deconvolution , Errors-in-variables , Supersmooth case , Ordinary smooth case , Linear processes , Local polynomial regression
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2010
Journal title :
Journal of Statistical Planning and Inference
Record number :
2220987
Link To Document :
بازگشت