Title of article :
Optimal prediction in finite populations under matrix loss
Author/Authors :
Xu، نويسنده , , Li-Wen and Lu، نويسنده , , Min and Jiang، نويسنده , , Chun-Fu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
2503
To page :
2512
Abstract :
Optimal prediction problems in finite population are investigated. Under matrix loss, we provide necessary and sufficient conditions for the linear predictor of a general linearly predictable variable to be the best linear unbiased predictor (BLUP). The essentially unique BLUP of a linearly predictable variable is obtained in the general superpopulation model. Surprisingly, the both BLUPs under matrix and quadratic loss functions are equivalent to each other. Next, we prove that the BLUP is admissible in the class of linear predictors. Conditions for optimality of the simple projection predictor (SPP) are given. Furthermore, the robust SPP and the robust BLUP are characterized on the misspecification of the covariance matrix.
Keywords :
Matrix loss , Admissibility , Robustness , spp , Finite population , BLUP
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221458
Link To Document :
بازگشت