Title of article :
Inference for Weibull distribution based on progressively Type-II hybrid censored data
Author/Authors :
Bayat Mokhtari، نويسنده , , Elham and Habibi Rad، نويسنده , , A. and Yousefzadeh، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.
Keywords :
Progressively Type-II hybrid censoring , Gibbs sampling , Credible intervals , Highest posterior density , mean square error , bias , Maximum likelihood estimators , Asymptotic distribution , Bayes estimators , Approximate maximum likelihood estimators , Coverage probabiliti
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference