Title of article :
Asymptotic expansion for nonparametric M-estimator in a nonlinear regression model with long-memory errors
Author/Authors :
Chen، نويسنده , , Jia and Li، نويسنده , , Degui and Lin، نويسنده , , Zhengyan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
3035
To page :
3046
Abstract :
We consider asymptotic expansion of the nonparametric M-estimator in a fixed-design nonlinear regression model when the errors are generated by long-memory linear processes. Under mild conditions, we show that the nonparametric M-estimator is first-order equivalent to the Nadaraya–Watson (NW) estimator, which implies that the nonparametric M-estimator has the same asymptotic distribution as that of the NW estimator. Furthermore, we study the second-order asymptotic expansion of the nonparametric M-estimator and show that the difference between the nonparametric M-estimator and the NW estimator has a limiting distribution after suitable standardization. The nature of the limiting distribution depends on the range of long-memory parameter α . We also compare the finite sample behavior of the two estimators through a numerical example when the errors are long-memory.
Keywords :
asymptotic expansion , Long-memory linear processes , Nonparametric M-estimator
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221544
Link To Document :
بازگشت