Title of article :
Nonparametric regression with responses missing at random
Author/Authors :
Efromovich، نويسنده , , Sam، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
3744
To page :
3752
Abstract :
For the case of a complete sample of univariate predictors and responses, the modern nonparametric regression matches results known for parametric and semiparametric regressions. The situation changes dramatically if some values in a sample are missing. This paper develops the theory of nonparametric regression for the classical case of responses missing at random. The main conclusion is that an adaptive estimator, based on a complete-case subsample, is asymptotically sharp minimax over all possible oracle-estimators that know: an underlying sample with missing responses; probability of observing the response given the predictor; smoothness of an underlying regression function; design density of the predictor; scale function of the regression error.
Keywords :
Complete case , Adaptation , MISE , Nuisance functions
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2011
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221660
Link To Document :
بازگشت