Title of article :
Optimal quantization applied to sliced inverse regression
Author/Authors :
Azaïs، نويسنده , , Romain and Gégout-Petit، نويسنده , , Anne and Saracco، نويسنده , , Jérôme، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
In this paper we consider a semiparametric regression model involving a d-dimensional quantitative explanatory variable X and including a dimension reduction of X via an index β ′ X . In this model, the main goal is to estimate the Euclidean parameter β and to predict the real response variable Y conditionally to X. Our approach is based on sliced inverse regression (SIR) method and optimal quantization in L p - norm . We obtain the convergence of the proposed estimators of β and of the conditional distribution. Simulation studies show the good numerical behavior of the proposed estimators for finite sample size.
Keywords :
Optimal quantization , Semiparametric regression model , Reduction dimension , Sliced inverse regression (SIR)
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference