Title of article :
A new approach to statistical efficiency of weighted least squares fitting algorithms for reparameterization of nonlinear regression models
Author/Authors :
Zheng، نويسنده , , Shimin and Gupta، نويسنده , , A.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We study nonlinear least-squares problem that can be transformed to linear problem by change of variables. We derive a general formula for the statistically optimal weights and prove that the resulting linear regression gives an optimal estimate (which satisfies an analogue of the Rao–Cramer lower bound) in the limit of small noise.
Keywords :
efficiency , Rao–Cramer bound , Nonlinear regression , reparameterization , Small sigma asymptotic , Weighted least squares
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference