Title of article :
Empirical likelihood confidence intervals for nonparametric functional data analysis
Author/Authors :
Lian، نويسنده , , Heng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We consider the problem of constructing confidence intervals for nonparametric functional data analysis using empirical likelihood. In this doubly infinite-dimensional context, we demonstrate the Wilkʹs phenomenon and propose a bias-corrected construction that requires neither undersmoothing nor direct bias estimation. We also extend our results to partially linear regression models involving functional data. Our numerical results demonstrate improved performance of the empirical likelihood methods over normal approximation-based methods.
Keywords :
Empirical likelihood , Strong mixing data , Wilkיs theorem , Nonparametric functional data analysis
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference