Title of article :
Convolution power kernels for density estimation
Author/Authors :
Comte، نويسنده , , F. and Genon-Catalot، نويسنده , , V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
18
From page :
1698
To page :
1715
Abstract :
We propose a new type of non-parametric density estimators fitted to random variables with lower or upper-bounded support. To illustrate the method, we focus on nonnegative random variables. The estimators are constructed using kernels which are densities of empirical means of m i.i.d. nonnegative random variables with expectation 1. The exponent m plays the role of the bandwidth. We study the pointwise mean square error and propose a pointwise adaptive estimator. The risk of the adaptive estimator satisfies an almost oracle inequality. A noteworthy result is that the adaptive rate is in correspondence with the smoothness properties of the unknown density as a function on ( 0 , + ∞ ) . The adaptive estimators are illustrated on simulated data. We compare our approach with the classical kernel estimators.
Keywords :
Adaptive estimators , Density estimation , Kernel estimators , Infinitely divisible distributions , Lower bounded support
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2012
Journal title :
Journal of Statistical Planning and Inference
Record number :
2221948
Link To Document :
بازگشت