Title of article :
Marginal methods for clustered longitudinal binary data with incomplete covariates
Author/Authors :
Chen، نويسنده , , Baojiang and Yi، نويسنده , , Grace Y. and Cook، نويسنده , , Richard J. and Zhou، نويسنده , , Xiao-Hua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Many analyses for incomplete longitudinal data are directed to examining the impact of covariates on the marginal mean responses. We consider the setting in which longitudinal responses are collected from individuals nested within clusters. We discuss methods for assessing covariate effects on the mean and association parameters when covariates are incompletely observed. Weighted first and second order estimating equations are constructed to obtain consistent estimates of mean and association parameters when covariates are missing at random. Empirical studies demonstrate that estimators from the proposed method have negligible finite sample biases in moderate samples. An application to the National Alzheimerʹs Coordinating Center (NACC) Uniform Data Set (UDS) demonstrates the utility of the proposed method.
Keywords :
association , Longitudinal data , Generalized estimating equation , missing covariates
Journal title :
Journal of Statistical Planning and Inference
Journal title :
Journal of Statistical Planning and Inference