Title of article :
Adaptive penalized quantile regression for high dimensional data
Author/Authors :
Zheng، نويسنده , , Qi and Gallagher، نويسنده , , Colin and Kulasekera، نويسنده , , K.B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
1029
To page :
1038
Abstract :
We propose a new adaptive L1 penalized quantile regression estimator for high-dimensional sparse regression models with heterogeneous error sequences. We show that under weaker conditions compared with alternative procedures, the adaptive L1 quantile regression selects the true underlying model with probability converging to one, and the unique estimates of nonzero coefficients it provides have the same asymptotic normal distribution as the quantile estimator which uses only the covariates with non-zero impact on the response. Thus, the adaptive L1 quantile regression enjoys oracle properties. We propose a completely data driven choice of the penalty level λ n , which ensures good performance of the adaptive L1 quantile regression. Extensive Monte Carlo simulation studies have been conducted to demonstrate the finite sample performance of the proposed method.
Keywords :
adaptive , Quantile regression , Oracle rate , Asymptotic normality , variable selection
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2013
Journal title :
Journal of Statistical Planning and Inference
Record number :
2222326
Link To Document :
بازگشت