Title of article :
Nonparametric regression estimates with censored data based on block thresholding method
Author/Authors :
Shirazi، نويسنده , , E. and Doosti، نويسنده , , H. and Niroumand، نويسنده , , H.A. and Hosseinioun، نويسنده , , N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
16
From page :
1150
To page :
1165
Abstract :
Here we consider wavelet-based identification and estimation of a censored nonparametric regression model via block thresholding methods and investigate their asymptotic convergence rates. We show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes, and in particular enjoy those rates without the extraneous logarithmic penalties that are usually suffered by term-by-term thresholding methods. This work is extension of results in Li et al. (2008). The performance of proposed estimator is investigated by a numerical study.
Keywords :
Censored data , Rate of convergence , Block thresholding , Minimax estimation , Nonparametric regression
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2013
Journal title :
Journal of Statistical Planning and Inference
Record number :
2222347
Link To Document :
بازگشت