Title of article :
Estimation of the population spectral distribution from a large dimensional sample covariance matrix
Author/Authors :
Li، نويسنده , , Weiming and Chen، نويسنده , , Jiaqi and Qin، نويسنده , , Yingli and Bai، نويسنده , , Zhidong and Yao، نويسنده , , Jianfeng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
1887
To page :
1897
Abstract :
This paper introduces a new method to estimate the spectral distribution of a population covariance matrix from high-dimensional data. The method is founded on a meaningful generalization of the seminal Marčenko–Pastur equation, originally defined in the complex plane, to the real line. Beyond its easy implementation and the established asymptotic consistency, the new estimator outperforms two existing estimators from the literature in almost all the situations tested in a simulation experiment. An application to the analysis of the correlation matrix of S&P 500 daily stock returns is also given.
Keywords :
High-dimensional data analysis , Empirical spectral distribution , Mar?enko–Pastur distribution , Large sample covariance matrices , Stieltjes transform
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2013
Journal title :
Journal of Statistical Planning and Inference
Record number :
2222454
Link To Document :
بازگشت