Title of article :
Extreme eigenvalues of large dimensional quaternion sample covariance matrices
Author/Authors :
Li، نويسنده , , Huiqin and Bai، نويسنده , , Zhidong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
14
From page :
1
To page :
14
Abstract :
In this paper, we investigate the almost sure limits of the largest and smallest eigenvalues of a quaternion sample covariance matrix. Suppose that X n is a p × n matrix whose elements are independent quaternion variables with mean zero, variance 1 and uniformly bounded fourth moments. Denote S n = 1 n X n X n ∗ . In this paper, we shall show that s max ( S n ) = s p ( S n ) → ( 1 + y ) 2 , a . s . and s min ( S n ) → ( 1 − y ) 2 , a . s . as n → ∞ , where y = lim p / n , s 1 ( S n ) ≤ ⋯ ≤ s p ( S n ) are the eigenvalues of S n , s min ( S n ) = s p − n + 1 ( S n ) when p > n and s min ( S n ) = s 1 ( S n ) when p ≤ n . We also prove that the set of conditions are necessary for s max ( S n ) → ( 1 + y ) 2 , a . s . when the entries of X n are i. i. d.
Keywords :
Extreme eigenvalues , Large dimension , Quaternion matrices , Random matrix theory , Sample covariance matrix
Journal title :
Journal of Statistical Planning and Inference
Serial Year :
2015
Journal title :
Journal of Statistical Planning and Inference
Record number :
2222749
Link To Document :
بازگشت