Title of article :
Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes
Author/Authors :
Matusik، نويسنده , , Jakub and Stodolak، نويسنده , , Ewa and Bahranowski، نويسنده , , Krzysztof، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
102
To page :
109
Abstract :
Polymer/clay nanocomposites receive much attention due to their interesting mechanical and thermal properties. Currently, the vast majority of plastics are made from petroleum-based synthetic polymers that do not degrade in a natural environment and their disposal poses a serious problem. An environmentally-conscious alternative is to design polymer nanocomposites that are biodegradable. present work the synthesis and properties of novel polymer/clay nanocomposites based on biodegradable polymer-polylactide (PLA) were investigated. Kaolinite nanotubes obtained by an intercalation/deintercalation method as well as platey kaolinites of different structural orders were used as fillers. Mechanical properties of composites (tensile strength (SU) and Youngʹs modulus (E)) were measured. The surface of the formed polymer derivatives was examined by AFM (Atomic Force Microscopy). The structural characterization was carried out using infrared spectroscopy (IR). Composites surface wettability was studied by measuring the water contact angle. chanical tests revealed that both SU and E values increased significantly after addition of the nano-filler in comparison to the pure PLA. Regardless of the filler content the increase of SU and E values was higher in the case of the nanotubular kaolinite. In particular, a threefold increase of the E value was noticed. For the most homogeneous kaolinite nanotubes/PLA nanocomposite SU increased from ~ 29 MPa (pure PLA) to ~ 43 MPa, while E increased from ~ 0.7 GPa (pure PLA) to ~ 2.3 GPa. These mechanical parameters were comparable with the ones measured for polypropylene (SU = 40 MPa; E = 1.5–2.0 GPa) and polystyrene (SU = 40 MPa; E = 3.0–3.5 GPa). Differential IR spectra of the nanocomposites indicated an interaction of kaolinites inner surface hydroxyls with PLA which was confirmed by an intensity decrease of a band at ~ 3690 cm− 1. The presence of highly dispersed nanotubular kaolinite particles in the polymer matrix which contributed to the improvement of PLA mechanical properties was observed using AFM. The contact angle measurements showed that the addition of kaolinites led to changes of wettability, yet the synthesized materials still possessed hydrophilic surfaces.
Keywords :
AFM , Kaolinite , mechanical properties , Polylactide , Nanotubes
Journal title :
Applied Clay Science:an International Journal on the Application...
Serial Year :
2011
Journal title :
Applied Clay Science:an International Journal on the Application...
Record number :
2223199
Link To Document :
بازگشت