Title of article :
A Micromechanical framework with aggregate-mastic interface effect for predicting uniaxial compression creep of asphalt mixture
Author/Authors :
Wu، نويسنده , , Jun and Yang، نويسنده , , Xinhua and Bai، نويسنده , , Fan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
According to the elastic-viscoelastic correspondence principle, an elastic micromechanical framework taking the inclusion-matrix interface effect into account is extended for predicting viscoelastic properties of asphalt mixture, which is simply treated as elastic coarse aggregate inclusions periodically and isotropically embedded in a viscoelastic asphalt mastic matrix. The Burgers model is adopted for characterizing the matrix mechanical behavior, so that the homogenized relaxation modulus of asphalt mixture in compression creep is derived. After a series of uniaxial compression creep tests are performed on asphalt mastic in different temperature and stress conditions in order to determine the matrix constitutive parameters, the framework presented is validated by comparison with the experiment, and then some predictions of uniaxial compression creep behavior of asphalt mixture in different temperature and stress conditions are given.
Keywords :
Micromechanics , Compression creep , elastic-viscoelastic correspondence principle , Asphalt mixture
Journal title :
Acta Mechanica Solida Sinica
Journal title :
Acta Mechanica Solida Sinica