Title of article :
Composition and solubility of precipitated copper(II) arsenates
Author/Authors :
Nelson، نويسنده , , Hanna and Shchukarev، نويسنده , , Andrey and Sjِberg، نويسنده , , Staffan and Lِvgren، نويسنده , , Lars، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
696
To page :
704
Abstract :
Equilibrium reactions involving Cu(II) and As(V) have been studied with respect to formation of complexes in aqueous solutions as well as formation of solid phases. Potentiometric titrations performed at 25 °C (I = 0.1 M Na(Cl)) and at different Cu to As ratios gave no evidence for the existence of Cu(II) arsenate complexes in solution below the pH of the precipitation boundaries (pH ≈ 4), irrespective of the Cu to As ratio and pH. Mixing of solutions of Cu(II) and As(V) at different proportions and adjusting pH to values ranging from 4 to 9 resulted in precipitation of five different solid phases. The elemental composition of the solids was determined using X-ray Photoelectron Spectroscopy, and Environmental Scanning Microscopy–Field Emission Gun equipped with an energy dispersive spectroscopy detector. The average Cu/As ratio was determined by dissolving the solids. Total soluble concentrations of the components Cu(II) and As(V), as well as the basicity of the solid phases were determined by analysis of aqueous solutions. Based upon these experimental data the stoichiometric composition of the solid phases and their stability were determined. The resulting equilibrium model includes the solid phases Cu3(AsO4)2, Cu3(AsO4)(OH)3, Cu2(AsO4)(OH), Cu5Na(HAsO4)(AsO4)3 and Cu5Na2AsO4)4, where Cu5Na(HAsO4)(AsO4)3 and Cu5Na2(AsO4)4 have not been reported previously. In 0.1 M Na(Cl), Na+ was found to be a significant component in two of the solid phases. The Cu5Na2(AsO4)4 was formed in weakly alkaline conditions with pNa < 2.5. Stability constants for all solid phases have been determined. Distribution diagrams as well as predominance area (pNa–pH) diagrams are presented to illustrate stability fields of the different solid phases.
Journal title :
Applied Geochemistry
Serial Year :
2011
Journal title :
Applied Geochemistry
Record number :
2232235
Link To Document :
بازگشت