Author/Authors :
Pfingsten، نويسنده , , Wilfried and Bradbury، نويسنده , , Mike and Baeyens، نويسنده , , Bart، نويسنده ,
Abstract :
The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 × 10−5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II)EQBM) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II)EQBM level of 10−7 M without Fe(II) competition, the reactive transport calculations using a constant Kd approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II)EQBM (10−5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant Kd approach.
orption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the two competing sorbates and their respective concentrations. At background Fe(II) concentrations of 5.3 × 10−5 M, and a Ni(II)EQBM level of 10−7 M, the Ni(II) breakthrough time was ∼15 times earlier than in the absence of competition. At such Fe(II) concentrations the Ni(II) breakthrough curves at all source concentrations less than 3.5 × 10−5 M (fixed by the NiCO3,S solubility limit) are the same i.e. Ni(II) exhibits linear (low) sorption.
itive sorption effects can have significant influences on the transport of radionuclides through compacted bentonite i.e. reduce the migration rates. Since, for the case considered here, the Fe(II) concentration in the near field of a high-level radioactive waste repository may change in time and space, the transport of bivalent transition metal radionuclides can only be properly modelled using a multi-species reactive transport code which includes a sorption model.