Title of article :
Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles
Author/Authors :
Rui de Abrantes، نويسنده , , Rui and Vicente de Assunçمo، نويسنده , , Joمo and Pesquero، نويسنده , , Célia Regina and Bruns، نويسنده , , Roy Edward and Nَbrega، نويسنده , , Raimundo Paiva، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
648
To page :
654
Abstract :
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. s showed that the total PAH emission factor varied from 41.9 μg km−1 to 612 μg km−1 in the gasohol vehicle, and from 11.7 μg km−1 to 27.4 μg km−1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km−1 to 4.61 μg TEQ km−1 for the gasohol vehicle and from 0.0117 μg TEQ km−1 to 0.0218 μg TEQ km−1 in the ethanol vehicle. e gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.
Keywords :
Vehicular emission , air pollution , Toxic pollutants , gasohol , Ethanol , PAH
Journal title :
Atmospheric Environment
Serial Year :
2009
Journal title :
Atmospheric Environment
Record number :
2234485
Link To Document :
بازگشت