Title of article :
Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity
Author/Authors :
Charbouillot، نويسنده , , Tiffany and Gorini، نويسنده , , Sophie and Voyard، نويسنده , , Guillaume and Parazols، نويسنده , , Marius and Brigante، نويسنده , , Marcello and Deguillaume، نويسنده , , Laurent and Delort، نويسنده , , Anne-Marie and Mailhot، نويسنده , , Gilles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
1
To page :
8
Abstract :
In the first part of the work, we investigated the reactivity toward photogenerated hydroxyl radicals (OH) of seven monocarboxylic acids and six dicarboxylic acids found in natural cloud water. This leads to the proposition of a schematic degradation pathway linking glutaric acid (C5) to complete mineralization into CO2. We report a detailed mechanism on the succinic acid reactivity toward OH leading to the formation of malonic, glyoxylic and consequently oxalic acids and a comparison with reported pathways proposed by the CAPRAM (Chemical Aqueous Phase RAdical Mechanism) is discussed. We also investigated the photooxidation of formic acid under atmospherically relevant conditions leading to the possible formation of oxalic acid via radical mediated recombination. cond part focuses on the polychromatic irradiation (closed to solar irradiation) of a collected cloud aqueous phase showing that irradiation of cloud water leads to the formation of both formic and acetic acids. Carboxylic acid formation increases in the presence of photogenerated hydroxyl radicals from hydrogen peroxide, showing that photooxidation could play a key role in the formation of carboxylic acids under atmospherically relevant conditions.
Keywords :
Phototransformation , atmosphere , Hydroxyl radical , dimerization , photochemistry , Organic matter
Journal title :
Atmospheric Environment
Serial Year :
2012
Journal title :
Atmospheric Environment
Record number :
2239652
Link To Document :
بازگشت