Title of article :
Developing a predictive tropospheric ozone model for Tabriz
Author/Authors :
Khatibi، نويسنده , , Rahman and Naghipour، نويسنده , , Leila and Ghorbani، نويسنده , , Mohammad A. and Smith، نويسنده , , Michael S. and Karimi، نويسنده , , Vahid and Farhoudi، نويسنده , , Reza and Delafrouz، نويسنده , , Hadi and Arvanaghi، نويسنده , , Hadi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
286
To page :
294
Abstract :
Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.
Keywords :
Policy , Protecting the public , Prediction capability (MLR , ANN , ARIMA , chaos theory) , tropospheric ozone , Environmental hazard , GEP
Journal title :
Atmospheric Environment
Serial Year :
2013
Journal title :
Atmospheric Environment
Record number :
2240712
Link To Document :
بازگشت