Title of article :
Explosion quakes at Stromboli (Italy)
Author/Authors :
Ereditato، نويسنده , , Davide and Luongo، نويسنده , , Giuseppe، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
This paper reports the results of two seismic experiments aimed at determining the wave field of explosion quakes at Stromboli Island (Mediterranean Sea, Southern Italy). The typical Strombolian activity mostly consists of explosive phenomena causing pyroclastic, materials to be emitted together with jets of volcanic gases from one or more craters. Stromboli is an active volcano characterized by persistent seismic activity consisting of explosion quakes that are seismic events associated with the explosive volcanic phenomena. Explosion quakes are short lived seismic events occurring intermittently whose amplitude tends to decrease with distance from the vent. A distinctive feature of explosion quakes is the presence on seismograms of two, often clearly distinct, seismic phases. The first, low-frequency seismic phase (<2 Hz) is in fact usually followed by a high-frequency seismic phase (>3–4 Hz) after one second or more. The first seismic phase of explosion quakes has been shown to be characterized by a nearly radial linear polarization and by an apparent propagation velocity estimated at 600–800 m/s. The second phase is characterized by a more chaotic motion and a lower apparent propagation velocity of 150–450 m/s. The wavefield associated with the first low-frequency seismic phase appears to be generated by a resonating P-wave seismic source accompanying gas explosion and emission of pyroclastic materials. The wavefield associated with the second high-frequency seismic phase of explosion quakes appears to be mainly composed of scattered and converted waves due to the critical topography of the volcano.
Keywords :
explosion quakes , Polarization analysis , Strombolian activity
Journal title :
Journal of Volcanology and Geothermal Research
Journal title :
Journal of Volcanology and Geothermal Research