Title of article :
The trace-element characteristics of Aegean and Aeolian volcanic arc marine tephra
Author/Authors :
Clift، نويسنده , , Peter and Blusztajn، نويسنده , , Jerzy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
27
From page :
321
To page :
347
Abstract :
High-silica volcanic ashes are found within deep-sea sediments throughout the Eastern Mediterranean. Although coring by Ocean Drilling Program has penetrated Lower Pliocene (∼4 Ma) sediments, few ashes older than 400 k.y. have been recovered, suggesting a young initiation to subaerial Aegean Arc volcanism. Ashes derived from the Aegean volcanic front were cored south and east of the arc, and are typified by medium-K, calc-alkaline major-element compositions, contrasting with high-K ashes from the Aeolian Arc found in the Ionian Sea and as far east as Crete. Ion microprobe analysis of individual glass shards shows that all the ashes have a light rare earth element (LREE)-enriched pattern after normalizing against a chondrite standard. Aeolian Arc-derived ashes show greater enrichment than those from the Aegean area. Within the latter set, two groups are discernible, a mildly enriched set similar to the volcanoes of the arc volcanic front, and a more enriched group corresponding to lavas from the backarc region or possible from western Anatolia. Multi-element `spider diagramsʹ also show a bimodal division of enriched and depleted Aegean ashes, possibly caused by source depletion due to melt extraction in the Aegean backarc followed by remelting under the volcanic front. Relative Nb depletion, a characteristic of arc volcanism, is seen to be modest in Aegean and non-existent in Aeolian ashes. Using B/Be as a proxy for the flux of material from the subducting slab, this influence is seen to be low in the Aeolian Arc but higher than at Vesuvius. B/Be is higher again in the Aegean Arc. These differences may reflect the rate of subduction in each system. Data suggest caution is required when correlating ashes solely on the basis of major elements, as alkaline ashes from the central part of the study may be derived from Italy or from the Aegean backarc.
Keywords :
Slab flux , Microprobe , Aegean arc , Aeolian arc , tephras
Journal title :
Journal of Volcanology and Geothermal Research
Serial Year :
1999
Journal title :
Journal of Volcanology and Geothermal Research
Record number :
2242908
Link To Document :
بازگشت