Title of article :
Shear viscosity of rhyolite-vapor emulsions at magmatic temperatures by concentric cylinder rheometry
Author/Authors :
Stein، نويسنده , , Daniel J. and Spera، نويسنده , , Frank J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
The viscosity of natural rhyolitic melt from Lipari, Aeolian Islands and melt-bubble emulsions (30–50 vol% porosity) generated from Lipari rhyolite have been measured in a concentric cylinder rheometer at temperatures and shear rates in the range 925–1150°C and 10−3–10−1.2 s−1, respectively, in order to better understand the dependence of emulsion shear viscosity on temperature and shear rate in natural systems. Bubble-free melt exhibits Newtonian–Arrhenian behavior in the temperature range 950–1150°C with an activation energy of 395±30 kJ/mol; the shear viscosity is given by log ηm=−8.320+20624/T. Suspensions were prepared from natural rhyolite glass to which small amounts of Na2SO4 were added as a ‘foaming agent’. Reasonably homogeneous magmatic mixtures with an approximate log-normal distribution of bubbles were generated by this technique. Suspension viscosity varied from 106.1 to 108.37 Pa s and systematically correlates with temperature and porosity in the shear stress range (104.26–105.46 Pa) of the experiments. The viscosity of melt-bubble emulsions is described in terms of the relative viscosity, ηr=ηe/ηm where ηe is the emulsion viscosity and ηm is the viscosity of melt of the same composition and temperature. The dependence of relative viscosity on porosity for magmatic emulsions depends on the magnitude of the capillary number Ca≡G/(σrb−1ηm−1), the ratio of viscous forces acting to deform bubbles to interfacial forces resisting bubble deformation. For inviscid bubbles in magmatic flows three regimes may be identified. For Ca<0.1, bubbles are nearly spherical and relative viscosity is an increasing function of porosity. For dilute systems, ηr=1+φ given by the classical result of Taylor [Proc. R. Soc. London A 138 (1932) 41–48]. For Ca in the range 0.1<Ca<10, emulsions behave as power law fluids and the relative viscosity depends on shear rate (or Ca) as well as porosity. At high Ca (Ca>10) an asymptotic regime is reached in which relative viscosity decreases with increasing porosity and is independent of Ca. Our experiments were carried out for 30<Ca<925 in order to quantify the maximal effect of bubbles in reducing the viscosity of magmatic emulsions relative to single-phase melt at identical conditions of shear rate and temperature. The viscosity of a 50 vol% emulsion is a factor of five smaller than that of melt alone. Rheometric measurements obtained in this study are useful in constraining models of magma transport and volcanic eruption mechanics relevant to transport of volatile-saturated magma in the crust and upper mantle.
Keywords :
magmatic emulsion , magma rheology , melts and bubbles , relative viscosity
Journal title :
Journal of Volcanology and Geothermal Research
Journal title :
Journal of Volcanology and Geothermal Research