Title of article :
Hardbottom development and significance to the sediment-starved west-central Florida inner continental shelf
Author/Authors :
Obrochta، نويسنده , , Stephen T and Duncan، نويسنده , , David S and Brooks، نويسنده , , Gregg R، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
291
To page :
306
Abstract :
Hardbottoms are sequence boundaries and condensed sections that offer clues for the interpretation of the incomplete record of Tertiary continental shelf evolution. Seaward of 5 km, 50% of the inner west-central Florida shelf seafloor is flat hardbottom. These lithified surfaces are punctuated by shorefacing, scarped hardbottoms that trend shore-parallel (330°–0°) and vary in relief (up to 4 m). Scarped hardbottoms are the only natural relief on the inner shelf and support a diverse benthic community, the activities of which erode the outcrops, producing undercuts in excess of 1 m. Outcropping hardbottom strata are comprised of distinct, phosphate-rich, mixed carbonate–siliciclastic lithofacies, that range in age from Miocene to Quaternary. Miocene units are dolomite-rich and mark the upper surface of the inner shelf bedrock (Hawthorn Group). Dolomite within these beds (silt-sized, cloudy centered rhombs) fall into two age groups, correlating with highstands at 15 and 5 Ma. This lithofacies is consistent with models that indicate an increased flux of organic matter – resulting from topographically induced upwelling – promoting dolomitization during early burial diagenesis in the sulfate-reduction zone. Quaternary units are calcite-rich and perched atop the shelf bedrock. Samples of these units record a complex diagenetic history and multiple sea-level fluctuations. Based on evidence of primary marine cementation, they are interpreted to be hardground (non-deposition) surfaces, forming as a function of sediment starvation and minimal sediment movement. Decreased highstand magnitude or duration may have resulted in the absence of a significant organic component to Quaternary hardbottoms, which, in turn, may prevent subsequent dolomitization. These outcrops are a potential source for sediments to the inner shelf, not only as habitat for biological sediment production, but also through their destruction. The undercut, shorefacing, scarped hardbottom morphology displayed by west-central Florida hardbottoms is indicative of bio-erosion. Preliminary studies indicate a potential mass of 0.04 kg m−2 yr−1 of siliciclastic sediment is released to the inner shelf.
Keywords :
Carbonate diagenesis , hardbottoms , carbonate petrology , Dolomitization , shallow water carbonates
Journal title :
Marine Geology
Serial Year :
2003
Journal title :
Marine Geology
Record number :
2259951
Link To Document :
بازگشت