Title of article :
Spatial and temporal variability of coastal storms in the North Atlantic Basin
Author/Authors :
Keim، نويسنده , , Barry D. and Muller، نويسنده , , Robert A. and Stone، نويسنده , , Gregory W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
9
From page :
7
To page :
15
Abstract :
Over the past three to four decades, there has been a growing awareness of the important controls exerted by large-scale meteorological events on coastal systems. For example, definitive links are being established between short-term (timescales of 5–10 years) beach dynamics and storm frequency. This paper assesses temporal variability of coastal storms (both tropical and extratropical) and the wave climatology in the North Atlantic Basin (NAB), including the Gulf of Mexico. With both storm types, the empirical record shows decadal scale variability, but neither demonstrates highly significant trends that can be linked conclusively to natural or anthropogenic factors. Tropical storm frequencies have declined over the past two or three decades, which is perhaps related to recent intense and prolonged El Niños. Some forecasts predict higher frequencies of tropical storms like that experienced from the 1920s to the 1960s to occur in coming decades. Results from general circulation models (GCMs) suggest that overall frequencies of tropical storms could decrease slightly, but that there is potential for the generation of more intense hurricanes. These data have important implications for the short-term evolution of coastal systems. is strong suggestion that extratropical systems have declined overall over the past 50–100 years, but that there is an increase in frequency of very powerful storms, especially at higher latitudes. Both ENSO and the North Atlantic Oscillation (NAO) are shown to have associations with frequencies and tracking of these systems. These empirical results are in general agreement with GCM forecasts under global warming scenarios. Analyses of wave climatology in the NAB show that the last two to three decades have been rougher at high latitudes than several decades prior, but this more recent sea state is similar to conditions from about 100 years ago. The recent roughness at sea seems to be related to high NAO index values, which are also expected to increase with global warming. Thus, when coupled to an anticipated continued rise in global sea level, this trend will likely result in increasing loss of sediment from the beach-nearshore system resulting in widespread coastal erosion.
Keywords :
wave climatology , tropical storms , Temporal variability , extratropical storms
Journal title :
Marine Geology
Serial Year :
2004
Journal title :
Marine Geology
Record number :
2260308
Link To Document :
بازگشت